Aurora-Observatorium

Einen Ausflug mit der Uni will ich euch heut zeigen.

Ziel war das „Kjell Henriksen Observatory„. Ein Observatorium, das Platz für diverse passive Messungen im Wellenlängenbereich des sichtbaren Lichts bietet.

Blick aus einer der Kuppeln auf die 10km entfernte Stadt und das EISCAT-Radar.

dunkel gestrichene Räume mit Glaskuppeln beherbergen je ein Instrument. Im Weitesten Sinne sind die meisten Instrumente Kameras: In verschiedenster Weise messen sie Lichtintensität, meist nach Wellenlängen unterschieden. Instrumente die es möglich machen, eintreffendes Licht nach Farben aufzufächern und zu analysieren nennt man Spektrometer. Davon sind hier unter den Kuppeln einige zu finden. Auch ganz normale Kameras, wie diese hier, die mich stets mit dem aktuellen Stand der Aurora versorgt, noch ehe mit bloßem Auge und in der Stadt irgendwas wahrnehmbar ist.

Mit Kamera und Stativ in der Hand habe ich mich dann in dem einen Glasdom, der kein Instrument beherbergt, im stockdunkeln auf die wacklige Leiter gewagt und die Kamera in Position gebracht. Das Ergebnis seht ihr hier. Trotz großer Entfernung und Abschattung durch die Berge, stört die Stadt nach wie vor die Messungen.

Aurora über dem KHO

Trotz dicker Wolken haben wir dann letztendlich doch noch etwas Aurora zu sehen bekommen. Auf dem Heimweg dann sogar mit bloßem Auge sichtbar:

Auf dem Heimweg

Was wir genau messen wollten? Ach ja: Zwischen Aurora und Wolken kaum sichtbar ging es um das Phänomen „Airglow“ Floureszenz angereregter Atome in etwa 80km Höhe. Aus deren Leuchtintensität kann man z.B. die Temperatur in der Höhe ableiten. Dieses Phänomen tritt übrigens stetig und überall auf der Erde auf. Ohne Wolken und mit sehr geringer Lichtverschmutzung kann man es mit sehr viel Glück sogar mit bloßem Auge wahrnehmen.

Polarlichter und Wolken

Erst mal ein kleiner Eindruck von vorgestern:

Aurora hinter dünnen Stratuswolken

Ich war ganz alleine am Photographieren, da man mit bloßem Auge kaum etwas gesehen hat, wenn man nicht wusste, dass da was ist. Diese Aufnahme entstand dann mit ISO 1600, F4 und 60s Belichtungszeit.

 

Gestern war es dann um so heller, und ich habe mich für euch ein Stündchen in die Kälte gestellt:

Ich kann euch leider noch keine perfekte EMpfehlung geben, wie man Polarlichter am besten ablichtet. Meine Taktik besteht bislang stets in einigen Probeschüssen mit höchster ISO und offener Blende, um danach die Zeit runterzurechnen auf „Arbeitsmaße“. Was ich aber gelernt habe, ist, der Nachbearbeitung mehr zuzutrauen. Die Bilder sahen auf dem Kamerabildschirm lange nicht so gut aus, wie hier. Lieber n ticken unterbelichten statt zu starkes Rauschen zu riskieren. Das geht am Rechner alles wieder raus zu holen.

 

 

Zum Abschluss möchte ich euch noch eine Timelapse zeigen, die mein Kommilitone Frank aufgenommen hat, stattet seiner Flickr-Steite am besten gleich mal nen Besuch ab!

Public performance of Aurora Borealis in Nybyens backyard

 

Wetter und Space-Wetter

Den Freitag haben wir – größtenteils – bei einer Radarstation oberhalb des Tales verbracht. Eindrücke von da gibts heute:

Sehr schön fand ich die Veränderung der verschiedenen Wolkenschichten über den Tagesgang. Leider waren wir zu spät am Radar, um noch eine Timelapse zu erstellen.

Die tiefhängende Wolkenschicht, fast eher Nebel entsteht, wie ihr sehen könnt, nur über dem Wasser. Sie ist eine Folge der Temperaturdifferenz zwischen Wasser und Luft: Das warme Wasser kann mehr Feuchtigkeit an die Luft abgeben, als diese aufnehmen kann. Daher kondensiert dieses zu viel an Luftfeuchtigkeit als Wolke. Übrigens trotz Temperaturen knapp unter null als Flüssigwasserwolke.

Die höheren Wolken dagegen sind Eiswolken.

Auch wenn ich „höher“ schreibe, sind diese noch zu den niedrigen Wolken zu zählen, da sie sich in Höhen von etwa 1-1,5km befinden. An diesem Bild kann man die Entstehung der Wolken durch sog. Schwerewellen sehr schön nachvollziehen: Die Luft wird beim Anströmen des Berges zum Aufstieg gezwungen und kühlt sich dabei um 1 Kelvin (=1°C) pro 100m ab. Da die absolute Menge Wasser im Luftpaket dabei gleich bleibt, erhöht sich die temperaturabhängige relative Feuchte. Wird dabei die Sättigung überschritten, entsteht durch Kondensation – bzw. Sublimation – eine Wolke. hinter dem Berg sinkt das gleiche Luftpaket aus Stabilitätsgründen wieder ab und erwärmt sich dabei. Nun reicht die Feuchte natürlich nicht mehr, um zu Sättigung zu führen und damit Wolken zu bilden. Manchmal folgen jedoch hinter dem Berg noch mehrere solche Wellen, wie hier auch ganz schwach erkennbar, da das Luftpaket nicht direkt in die stabile Schichtung zurückfindet, sondern ein wenig um diese stabile Position auf und ab schwingt. Daher auch der Name „Schwerewellen“.

Zum Glück zog der Nebel wieder ab, bevor es Nacht wurde, so dass ich euch nach dem normalen Wetter nun noch ein bisschen Sonnenwind zeigen kann: Durch einen Sonnenfleck gab es am Freitag gewaltige Sonnenstürme, die entsprechend intensive und lang anhaltende Polarlichter zur Folge haben:

 

Aurora borealis

Erste Polarlichter habe ich aufgenommen, die ich euch natürlich nicht länger vorenthalten will. Es ist hier fast schon zu weit nördlich für Polarlichter, die gleiche Situation war – laut den Kommilitonen – bei deren Freunden in Tromsø wohl wesentlich eindrucksvoller.

Wie kommen Polarlichter zustande? Und warum gibts die nur in den hohen Breitengraden – übrigens genau so auch im Süden als Aurora australis – zu sehen?

Der Urheber der Polarlichter ist die Sonne. Bei Sonnenstürmen werden gewaltige Mengen an Plasma-Teilchen – Protonen und Elektronen – mit Geschwindigkeiten von mehreren hundert Metern pro Sekunde ins Weltall geschleudert. Wenn diese Stürme sich der Erde nähern, schützt uns unser Magnetfeld. Die gebogenen Feldlinien lenken die Partikel in den polaren Bereich ab, wo sie dann tiefer in die Atmosphäre eindringen, und in Höhen von etwa 100km dann auf Sauerstoff- und Stickstoff-Atome treffen. Bei der Kollision werden die Moleküle der Atmosphäre dann angeregt und emittieren Licht.

 

Das „Aurora-Oval“, in dem die Polarlichter entstehen, befindet sich ungefähr zwischen dem Polarkreis und dem 75. Breitengrad. Bei besonders intensiven Sonnenstürmen wandert die Aurora auch noch weiter nach Süden. Das man auf den etwas nördlicheren Inseln Svalbards Aurora-Forschung betreibt hat aber einen sinnvollen Grund:Besonders zwei Stellen des „Aurora Ovals“  sind interessant: Die „Mittagsseite“ wo die Sonnenstürme initial auftreffen, und die Mitternachtsseite, an der die sog. „Substorms“ aus der Rückkehr des Magnetfeldes in den Ausgangszustand auftreten. An beiden Punkten werden Polarlichter auftreten. Dummerweise sind die bei Tageslicht nicht so gut zu sehen – was insbesonders für die Mittagsseite oder „Dayside-Aurora“ gilt. Svalbard ist daher reizvoll, da die Polarnacht hier einige Monate dauert, in denen die „Dayside Aurora“ folglich beobachtet und erforscht werden kann.

Rote Aurora – mit bloßem Auge häufig – und so auch hier – gar nicht sichtbar.

Die Farben der Aurora hängen übrigens damit zusammen, auf welche Moleküle und in welcher Höhe die geladenen Partikel der Sonnenstürme auftreffen.

Zuletzt noch eine kleine Anmerkung: Die Aufnahmen entstanden mit Empfindlichkeiten zwischen 1600 und 6400 bei Zeiten von bis zu 30sec Blende lag zwischen 2 und 4. Die Berge sind nur durch die – nicht wirklich große – Lichtverschmutzung in Longyearbyen erhellt.

Zwölftelblick November

Im November hatte ich leider wenig Zeit bei Tageslicht (außer an zwei ganz verregneten Tagen, an denen ich einfach keine Lust hatte) und habe daher nur eine Nachtaufnahme vom letzten Vollmond für euch:

20151126_2334
26.11.2015, 23:34 Uhr

Ich gelobe Besserung und reiche evtl. morgen noch eine Aufnahme nach.

 

Hier die alten Aufnahmen:

20150831_1708-2
31.08., 17 Uhr
20150920_1900-2
20.09. 19 Uhr

 

23. Oktober, 13:49 Uhr
23. Oktober, 13:49 Uhr

Eh ichs vergesse: Hier gehts zum Projekt.